การเขียนแผนภาพแทนเซต

ในการเขียนแผนภาพแทนเซต เราเขียนรูปปิดสี่เหลี่ยมมุมฉากแทนเอกภพสัมพัทธ์ และรูปปิดวงกลม หรือวงรีแทนสับเซตของเอกภพสัมพัทธ์ ดังนี้

set1.jpg set2.jpg set3.jpg
เราเรียกแผนภาพดังกล่าวข้างต้นนี้ว่า "แผนภาพเวนน์ - ออยเลอร์" (Venn-Euler Diagram)




• ยูเนียน (Union)
บทนิยาม เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A B

ตัวอย่างเช่น A ={1,2,3}
B= {3,4,5}
A B = {1,2,3,4,5}
set4.jpg




• อินเตอร์เซกชัน (Intersection)
บทนิยาม เซต A อินเตอร์เซกชันเซต B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A และเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A B

ตัวอย่างเช่น A ={1,2,3}
B= {3,4,5}
A B = {3}
set5.jpg




• คอมพลีเมนต์ (Complements)
บทนิยาม ถ้าเซต A ใดๆ ในเอกภพสัมพัทธ์ U แล้วคอมพลีเมนต์ของเซต A คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U แต่ไม่เป็นสมาชิกของ A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A'

ตัวอย่างเช่น U = {1,2,3,4,5}
A ={1,2,3}
A' = {4,5}
set6.jpg

• ผลต่าง (Difference)
บทนิยาม ถ้าเซต A และ B เป็นเซตใดๆในเอกภพสัมพัทธ์ u เดียวกันแล้ว ผลต่างของเซต A และ B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A แต่ไม่เป็นสมาชิกของเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A - B

ตัวอย่างเช่น A ={1,2,3}
B= {3,4,5}
A - B = {1,2}